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Many real-world applications of target tracking and state estima-

tion are nonlinear filtering problems and can therefore not be solved

by closed-form analytical solutions. In the recent past, tensor-based ap-

proaches have become increasingly popular due to very effective de-

composition algorithms, which allow a compressed representation of

discretized, high-dimensional data. It has been shown that by means of

a Kronecker format of the Fokker–Planck equation, the Bayesian re-

cursion for prediction and filtering can be solved for probability den-

sities in a canonical polyadic decomposition (CPD). In this paper, the

application of this approach on tracking multiple targets in a cluttered

environment is presented. It is shown that intensity or probability hy-

pothesis density-based filters can well be implemented using the CPD

tensor format.

I. INTRODUCTION

As sensors become more and more ubiquitous, pow-
erful and practical algorithms are required to extract
relevant information from noisy, contradicting, ambigu-
ous, or erroneous measurements. Often, the theory of
Bayesian state estimation is a good choice to develop
algorithms that cope with these challenges. Recent re-
sults of different research groups demonstrate that the
common recursion of filtering and prediction can also be
solved based on a decomposed tensor representation of
the underlying multivariate density function. It is well
known that by means of a CANDECOMP/PARAFAC
decomposition (CPD) of a discretized density, a com-
putationally effective representation can be achieved.
Despite the fact that there are still open challenges, we
might say thatCPD representations are themost promis-
ing candidates to beat the curse of dimensionality in
many research domains, including nonlinear filtering. In
this paper, we apply the CPD-based state estimation to
the problem of multitarget tracking in cluttered environ-
ments.We derive all update equations for a CPD tensor
in the case of a single target and multiple targets when
false measurements are present. An evaluation shows
the performance of the approach.

The theory of target tracking has exposed a grow-
ing family of algorithms to compute the probability den-
sity function (pdf) of a system state based on noise-
corrupted sensor observations. An estimate of the state
is then obtained by taking the mean of the pdf.1 The
corresponding covariance matrix additionally provides
a measure of accuracy for this estimate. Bayesian esti-
mation is the framework of recursive filtering method-
ologies that allow us to process a current measurement
by means of a prior or initial density and a measurement
likelihood function that statistically describes the perfor-
mance of the sensor.Thus, a tracking algorithm is an iter-
ative updating scheme for calculating a conditional pdf
p(xk|Zk) that represents all available knowledge on the
object state xk at some time tk, which typically is chosen
as the present time. The densities are explicitly condi-
tioned on the sensor data time series Zk. The iterative
scheme consists of two processing steps per update cy-
cle, referred to as prediction and filtering. The manipula-
tion of the probability densities is given by the following
basic equations (see [1], [2] for instance).

Prediction. Assuming the Markov property of
the underlying object state, the prediction density
p(xk|Zk−1) is obtained by combining the evolution
model p(xk|xk−1) with the previous filtering density
p(xk−1|Zk−1):

p(xk−1|Zk−1)
evolution model−−−−−−−−−→

constraints
p(xk|Zk−1)

p(xk|Zk−1) =
∫

dxk−1 p(xk|xk−1)︸ ︷︷ ︸
evolution model

p(xk−1|Zk−1)︸ ︷︷ ︸
previous filtering

. (1)

1Depending on the scenario, for instance, the expectation value, the
maximum value, the median, or other statistics of the pdf can be used.

86 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 14, NO. 1 JUNE 2019

mailto:felix.govaers
mailto:bruno.demissie
mailto:altamash.khan
mailto:martin.ulmke
mailto:wolfgang.kochprotect LY1	extbraceright @fkie.fraunhofer.de


Filtering. The filtering density p(xk|Zk) is obtained
using the Bayes theorem by combining the sensor model
p(zk|xk), also called the “likelihood function,” with the
prediction density p(xk|Zk−1) according to

p(xk|Zk−1)
current sensor data−−−−−−−−−−→

sensor model
p(xk|Zk)

p(xk|Zk) = p(zk|xk) p(xk|Zk−1)∫
dxk p(zk|xk)︸ ︷︷ ︸

sensor model

p(xk|Zk−1)︸ ︷︷ ︸
prediction

. (2)

According to this paradigm, an object track represents
all relevant knowledge on a time-varying object state
of interest, including its history and measures that de-
scribe the quality of this knowledge.As a technical term,
“track” is therefore either a synonym for the collection
of densities p(xl |Zl ), l = 1, . . . ,k, . . ., or of suitably cho-
sen parameters characterizing them, such as estimates
and the corresponding estimation error covariance
matrices.

An analytical solution to a recursive computation of
these densities is given for instance by the Kalman filter
in the case of linear Gaussian models [3]. For nonlinear
scenarios, only approximate solutions are feasible. The
first-order Taylor approximation is called the extended
Kalman filter (EKF) that has low computation cost, due
to its analytic solution of the prediction and filtering
steps (see [1] for instance). The performance of the
linearization can be improved by means of determin-
istic samples chosen at the local neighborhood of the
current estimate. This algorithm is known as the un-
scented Kalman filter (UKF) [4]. The term particle filter
(PF) subsumes all kinds of numerical solutions with
nondeterministic samples. Here, knowledge about the
state typically is represented by a set of state samples,
which implies that the density is approximated by a
Dirac mixture. Because the process noise terms are
simulated by means of appropriately sampled random
vectors, these methods are also known as sequential
Monte Carlo (SMC) methods.

In the literature, a variety of particle filter algorithms
can be found [5]. Still, the basic sampling importance
resampling (SIR) particle filter [6] is often used due to its
robustness. The main drawback of the SIR-PF is that it
can suffer from impoverishment of the particle weights.
For numerical reasons, resampling has to be used in or-
der to avoid the particles to degenerate. More recently,
new algorithms have been proposed based on a log-
homotopy transition between the prior and the poste-
rior. For instance, the Daum–Huang filters (see [7] and
the references therein) model this transition phase in
terms of a physical flow that is determined by a “force”
induced by the measurement. This leads to a stochastic
differential equation (SDE) that then can be solved nu-
merically by introducing a discretized pseudotime evolv-
ing from the prior to the posterior pdf. However, the
computation time for solving the SDE is often quite high
for standard target tracking scenarios [8]. A different

homotopy approach is provided by the progressive fil-
ter that was published by Hanebeck in [9]. In the pro-
gressive filter, an incremental inclusion of the likelihood
function is achieved by a partition of the exponent of the
likelihood going from zero to one. This prevents particle
impoverishment by means of frequent resampling and
an appropriately chosen step size. A Kullback–Leibler
divergence-based approach to obtain the posterior par-
ticles is proposed in [10]. The resulting algorithm is sim-
ilar to the ensemble Kalman filter (EnKF)-based filter
proposed in [11], however, the additional noise term in
the Kalman-based update is different. The EnKF adds
some zero mean Gaussian-distributed noise to the mea-
surement of each sample and applies Kalman filter up-
date equations for each particle.As a consequence, a fast
filter results that is consistent and performs well in non-
linear scenarios. The EnKF also has been extended to
Gaussian mixtures in [12] and [13].

Instead of nondeterministic samples we can also use
a grid of equidistant space points to represent the pdf
in the field of view. The prior pdf is then obtained by
solving the Fokker–Planck equation (FPE), which is
equivalent to the integral formulation in (1). Challa and
Bar-Shalom for instance use finite differences in [14] to
obtain the solution of the FPE and show that a consis-
tent result is obtained even for highly nonlinear prob-
lems with large noise variances. This static approach has
not become as popular as the particle filters due to the
higher computational load. There is a notable change
in the way of thinking since it was discovered that sep-
arated representations of discretized multidimensional
functions have surprisingly good approximation prop-
erties [15]. Nowadays it may even be seen as the only
knownway to overcome the curse of dimensionality [16],
at least in cases, where the models can easily be approx-
imated by factorized functions. In other words, approx-
imations by separable functions are of particular inter-
est when the dimensionality of the problem becomes
large. To the authors’ knowledge, a first attempt to in-
tegrate the tensor decomposition into a Bayesian esti-
mation framework was given by Sun and Kumar [17].
Further development of the tensor-based approach and
some tracking examples were given in [18] and [19].

In this paper, we demonstrate the performance of
the tensor decomposition approach for realistic track-
ing problems with nonlinear measurement models. Fur-
ther, we show that it can also be applied to multitarget
tracking using the set theory-based approaches where
an intensity function is computed instead of a pdf. Mul-
tiple numerical evaluations are shown to demonstrate
that the tensor decomposition approach can achieve
convincing results in terms of estimation accuracy in
nonlinear filtering problems.

A. Structure

This paper is structured as follows. In Section II, we
review the basic concept of nonlinear filtering using the
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Fig. 1. Scheme of a tensor decomposition along its dimensions using
the Kronecker product of vectors for two and three dimensions.

Scheme taken from [21].

tensor decomposition approach.This is extended for the
handling of nondetections and clutter measurements in
Section III. The application on the set-based estima-
tion theory for multitarget tracking is given in Section
IV. Then, in Section V numerical examples are given to
demonstrate the performance of the approach. The pa-
per ends with conclusions in Section VI.

II. NONLINEAR STATE ESTIMATION BASED ON
TENSOR DECOMPOSITION

It was already discovered in 1927 byHitchcock that a
D-way tensor can be represented as a sum of outer prod-
ucts [20]:

Y =
L∑
l=1

y1,l ◦ · · · ◦ yD,l (3)

where L is the number of components. If for all
d ∈ {1, . . . ,D} yd,l are of a given size Nd × 1, in
other words a vector, this representation of the ten-
sor is called canonical polyadic decomposition or
CANDECOMP/PARAFAC decomposition.2 In this
case, the yd,l are called the loading vectors. This de-
composition of a tensor is visualized for D = 2 and
D = 3, respectively, in Fig. 1. It should be noted that this
decomposition of a two-way tensor (matrix) can easily
be obtained by the singular value decomposition (SVD).
For higher dimensions the problem of finding a decom-
posed representation becomes NP-hard [22]. However,
numerical solutions, such as the alternating least squares
(ALS) algorithm,exist [23],which yield satisfying results
for the problems addressed here in manageable time.
For a fixed dimension d, it is assumed that the state
space can be discretized into Nd grid points. These can
be uniformly spaced with a fixed step size of �xd or
chosen specifically for a numerical differentiation such
as Chebyshev polynomials [18]. The probability density
function restricted to the discretized state space points
yields a D-way tensor, which approximates the original
function:

p(xk|Zk) ≈ [p([xd]i|Zk)]n1,...,nD . (4)

2An explanation of the abbreviations involved can be found in [21] and
the references therein.

Throughout this paper, this tensor is represented in
a decomposed form. Thus, the pdf at time tk is approxi-
mated, again, by a CPD factorization:

[p([xd]i|Zk)]n1,...,nD ≈
L∑
l=1

ρ
(tk)
1,l ◦ · · · ◦ ρ

(tk)
D,l (5)

where L is the number of components, which usually
is a fixed user parameter and depends on the compu-
tational power of the fusion hardware and processing
time constraints, “◦” is the outer product and ρ

(tk)
d,l are the

so-called loading vectors of dimension Nd × 1 for each
d = 1, . . . ,D and l = 1 . . . ,L.

By means of an appropriate index function (see [19]
for instance), an equivalent representation of a tensor
can be achieved in its vectorized form:

p(xk|Zk) ≈
L∑
l=1

D⊗
d=1

ρ
(tk)
d,l (6)

where “⊗” is the Kronecker product. For the sake of no-
tational simplicity, the latter form will be used through-
out this paper.

It is assumed that the time evolution of the system is
described by a continuous-time stochastic system given
by

dx = f(x, t)dt + G(x, t)dw (7)

where f is the drift vector,G is the matrix of all diffusion
coefficients, and dw are the increments of a multivariate
Brownian motion with covariance Qt.

The measurement model is a general possibly non-
linear function h such that the observation at discrete
instants of time tk is given by

zk = h(xk, tk, vk) (8)

where vk is a random variable that represents the mea-
surement noise of the sensor.

It is well known that the posterior pdf conditioned
on all sensor data up to time tk can be computed recur-
sively by means of a prediction-filtering cycle. In recent
publications, a tensor decomposition-based state estima-
tion scheme has been proposed [17]–[19], which will be
summarized in the remainder of this section.

A. Initialization

For the initialization, it is assumed that the initial pdf
is given in a CPD form:

p(x0|Z0) =
L∑
l=1

D⊗
d=1

ρ
(t0 )
d,l . (9)

This can either be achieved by an analytical decompo-
sition into sums of products of a given pdf evaluated at
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the discretization points or numerically by the ALS for
instance.

B. Prediction

It is well known that the time evolution of the pdf
is described by the FPE, for which the drift and diffu-
sion parameters are given by the stochastic differential
equation in (7):

∂p
∂t

= −
D∑
i=1

∂([f]i p)
∂xi

+ 1
2

D∑
i, j=1

∂2([B]i, j p)
∂xi∂x j

(10)

where B = GQG� is the combined diffusion coefficient
matrix. In the above equation, [f]i denotes the ith entry
of the drift vector and [B]i, j is the entry in the ith row and
jth column of the diffusion matrix. It is assumed that all
components can be represented in a separable form such
that

[f]i(x) =
Ki∑
k=1

D∏
d=1

f id,k(xd) (11)

[B]i, j(x) =
Ki, j∑
k=1

D∏
d=1

Bi, j
d,k(xd) (12)

where Ki and Ki, j are the number of components of the
functions [f]i and [B]i, j, respectively. By means of differ-
entiation matrices and the FPE parameters in a separa-
ble form on the discretized grid we obtain an FPE oper-
ator L such that

∂p
∂t

= Lp (13)

where p is the pdf in a tensorized form. In the recent
literature, two different approaches have been proposed
to compute a numerical solution of the FPE for CPD
tensors.The first solution is based on the ALS,where the
FPE operator is augmented with a differentiationmatrix
Dt for the time dimension,which is accumulatedwith the
pdf [17]:

(Dt − L)p(x, t) = 0. (14)

Since the trivial solution p = 0 of (14) has to be avoided,
constraints are added to the least square optimization
such that the pdf is normalized andmatches the previous
pdf for the start time.

The second solution uses the tensor exponential of
the FPE operator since it holds that

p(x, tk) = exp {�t · L} p(x, tk−1) (15)

where �t is the time difference tk − tk−1. Here, the ten-
sor exponential is approximated by means of a Taylor
series [19].

C. Filtering

For the recursive prediction-filtering cycle, it is re-
quired to compute the posterior pdf, which incorporates
the information of a given observation zk at time tk. This
is achieved by means of the Bayes theorem

p(xk|Zk) = p(zk|xk) · p(xk|Zk−1)∫
dxk p(zk|xk) · p(xk|Zk−1)

(16)

where p(zk|xk) is the likelihood function. Since the
likelihood evaluated on the discretized state space is
a tensor, it is assumed that it is also given in a CPD
form:

p(zk|xk) =
L′∑
l ′=1

D⊗
d=1

λd,l ′ . (17)

As for the initial estimation pdf, this can be achieved by
numerical methods if the likelihood function cannot be
decomposed analytically. As a consequence, the poste-
rior is given by

p(xk|Zk) = 1
c

L∑
l=1

L′∑
l ′=1

D⊗
d=1

ρ
(k|k−1)
d,l 	 λd,l ′ (18)

=:
L̃∑
l=1

D⊗
d=1

ρ
(k|k)
d,l (19)

where “	” is the Hadamard (pointwise) product, L̃ =
L · L′, and c is the normalization constant [17]. In order
to keep the number of components L fixed, a mixture
reduction technique such as tensor deflation has to be
applied [21].

Note that the normalization constant of a CPD ten-
sor p can easily be computed by the following summa-
tion3: ∫

dx p(x) =
L∑
l=1

D∏
d=1

�xd

Nd∑
id=1

[ρd,l]id (20)

where �xd is the discretization size of the state space in
the dth dimension.

III. TRACKING IN CLUTTER

If the sensor produces multiple measurements at
time tk of a single target, the interpretation of the mea-
surement origins is ambiguous.Measurements that come
from unwanted objects or false detections are often re-
ferred to as clutter. If it is assumed that the target is de-
tected with probability pD, we have one additional in-
terpretation assuming that the target is not detected at
all. Therefore, let Zk denote the set ofmk measurements
z1k, . . . , z

mk
k produced at time tk.

3More details on implementation issues of the CPD tensor approach
are given in the Appendix.
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Let jk = 0 denote the data interpretation hypoth-
esis that the object has not been detected at all by the
sensor at time tk and so all measurements have to be
considered as clutter. A hypothesis denoted by jk ∈
{1, . . . ,mk} refers to the interpretation that the object
has been detected, z jkk ∈ Zk being the correspond-
ing measurement, and the remaining sensor data being
clutter. Evidently, the set {0, . . . ,mk} describes mutu-
ally exclusive and exhaustive data interpretations. Due
to the total probability theorem we have the following
equation [24]:

p(Zk,mk|xk) = pD p(Zk,mk|xk,O)

+ (1 − pD) p(Zk,mk|¬O) (21)

where pD is the probability of detection andO is the enu-
meration of a detection event. Often, it is assumed that
the clutter measurements can bemodeled statistically by
a Poisson distribution in the number of measurements,
which are uniformly distributed in the state space.There-
fore, we have

p(Zk,mk|¬O) = p(Zk|mk,¬O)p(mk|¬O)

= pF (mk) · |FoV|−mk (22)

pF (mk) = m̄mk

mk!
e−m̄ (23)

where m̄ is the mean number of false measurements, pF
its Poisson distribution, and |FoV| is the size of the field
of view. For the density conditioned on a detection, we
can enumerate the data interpretation that the jth mea-
surement is from the target:

p(Zk|xk,O) =
mk∑
j=1

p(Zk|xk,O, j)p( j|O, xk). (24)

Since hypothesis j implies that there are mk − 1 false
measurements, we have the following equation:

p(Zk,mk|xk,O, j) = p(Zk|mk, xk,O, j)p(mk|O)

= pF (mk − 1)|FoV|−(mk−1) · p(z jk|xk)
(25)

where p(z jk|xk) is the density describing the sensor statis-
tics for measuring a target with state xk. Furthermore, it
is assumed that all hypotheses have the same prior prob-
ability, which yields

p( j|O, xk) = 1
mk

. (26)

Together we obtain

p(Zk|xk) = pD
1
mk

pF (mk − 1)|FoV|−(mk−1)
mk∑
j=1

p(z jk|xk)

+ (1 − pD)pF (mk) · |FoV|−mk (27)

=pF (mk)|FoV|−mk ·
(
pD

|FoV|
m̄

mk∑
j=1

p(z jk|xk) + (1 − pD)

)

(28)

= pF (mk)|FoV|−mk

ρF
·
(
pD

mk∑
j=1

p(z jk|xk) + (1 − pD)ρF

)

(29)

where ρF = m̄
|FoV| denotes the clutter density.

Since it is sufficient to model the likelihood function
up to proportionality, we can neglect the constant factor
and obtains

p(Zk|xk) ∝ (1 − pD)ρF + pD
mk∑
j=1

p(z jk|xk). (30)

Again, it is assumed that a decomposed form of the sen-
sor statistics p(z jk|xk) is available:

p(z jk|xk) =
L′∑
l ′=1

D⊗
d=1

λ
j
d,l . (31)

This leads to a posterior pdf given by

p(xk|Zk) = 1
c

(
(1 − pD)ρF

L∑
l=1

D⊗
d=1

ρ
(k|k−1)
d,l

+ pD
mk∑
j=1

L∑
l=1

L′∑
l ′=1

D⊗
d=1

ρ
(k|k−1)
d,l 	 λ

j
d,l ′

)
.

(32)

Again, it is obvious that the posterior is already given in a
decomposed form, however, the number of components
has increased by a factor of 1+L′ ×mk and therefore a
deflation algorithm has to be applied for recursions with
a constant number of loading vectors.

IV. MULTITARGET TRACKING

For a multitarget scenario, Bayesian filters can be
derived by means of the theory of point set statistics.
In the case that all targets are significantly separated,
it is well possible to apply the single target filters from
above on individual clusters. In all other cases, proba-
bility hypothesis density (PHD) [25] or intensity-based
filters [26] have been proven particularly useful since
association-free implementations are available that are
easy to implement and of low computational complex-
ity. Since there is no free lunch, this comes with a loss of
target identities.However,methods have been proposed
to overcome this problem.

The basic idea of the PHD or intensity filter is to
model the conditional pdf of the set x1k, . . . , x

n
k of n tar-

get states as an inhomogeneous Poisson point process,
that is, the number of targets is assumed to be Poisson
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distributed:

p(x1k, . . . , x
n
k,n) = p(x1k, . . . , x

n
k|n) p(n) (33)

where

p(n) = exp (−μ)
μn

n!
(34)

μ =
∫

dx f (x) (35)

p(x1k, . . . , x
n
k|n) = n! ·

n∏
j=1

p(x jk). (36)

The factor of n! in (36) comes from the summation over
all possible permutations of target identities, since the
set is order free. The function f is the so-called intensity
or PHD. Its integral μ is the mean number of targets and
the spatial distribution of a target can be obtained by
normalization of f :

p(x jk) = f (x jk)∫
dx f (x)

. (37)

Combining the above equations directly yields

p(x1k, . . . , x
n
k,n) = exp

{
−

∫
dx f (x)

} n∏
j=1

f (x jk). (38)

Therefore, f fully characterizes the point process.
In Bayesian set filters, it is sufficient to compute the

prior and posterior intensity function f , if the Poisson
assumption from above holds:

fk−1|k−1
prediction−−−−−→ fk|k−1 (39)

fk|k−1
filtering−−−−→ fk|k. (40)

In this section, it is shown that a recursive computa-
tion of themultitarget intensity function can be achieved
by means of a decomposed tensor representation. For
the initialization or previous filtering step, it is assumed
that the intensity is given in a decomposed form:

fk−1|k−1 =
L∑
l=1

D⊗
d=1

ρ
(k−1|k−1)
d,l . (41)

Due to the relationship (37), the time evolution of
the intensity function is described by the FPE:

∂ f
∂t

= −
D∑
i=1

∂([f]i f )
∂xi

+ 1
2

D∑
i, j=1

∂2([B]i, j f )
∂xi∂x j

. (42)

Another way to see this is the equivalence of the FPE
to the Chapman–Kolmogorov equation [27], which is a
more common way to compute the prior of a set theory-
based filter [26]. As a consequence, it is possible to use
one of the tensor propagators described in Section II-B.

Often, birth and death processes are modeled in ad-
dition to the system evolution to handle appearing or

disappearing targets. Let ν(x) be an intensity of a target
birth point process given in a CPD representation

ν(x) =
Lb∑
lb=1

D⊗
d=1

νd,lb (43)

and pTD(x) be the probability of target death such that
the probability of survival is given by

pS(x) = 1 − pTD(x) =
Ld∑
ld=1

D⊗
d=1

pSd,ld . (44)

If

f ′
k|k−1 =

L∑
l=1

D⊗
d=1

ρ
(k|k−1)′
d,l (45)

denotes the CPD tensor approximation of the intensity
after the application of the time propagator, then the
prior intensity is obtained by the superposition of the
birth and death processes [26]. The result again is a CPD
tensor, where deflation algorithms have to be applied to
keep the number of loading vectors constant:

fk|k−1 =
Lb∑
lb=1

D⊗
d=1

νd,lb +
Ld∑
ld=1

L∑
l=1

D⊗
d=1

pSd,ld 	 ρ
(k|k−1)′
d,l .

(46)

In many practical applications, it is sufficient to model
the birth process as a constant birth rate ν(x) = b and
analogously set a constant probability of target death
pTD(x) = d. In this case, the prior reduces to

fk|k−1 = b∏D
d=1 �xdNd

D⊗
d=1

1d

+ (1 − d)
L∑
l=1

D⊗
d=1

ρ
(k|k−1)′
d,l (47)

where 1d is the vector consisting of Nd ones.

A. Multitarget Filtering

Let Zk = z1k, . . . , z
mk
k be the set of observations pro-

duced at time tk. As shown by Mahler [25], it is possible
to approximate the posterior pdf of a multitarget Pois-
son point process by the following intensity function:

fk|k =
⎛
⎝(1 − pD) +

mk∑
j=1

p(z jk|x) pD
λ(z jk)

⎞
⎠ fk|k−1 (48)

λ(z jk) = λc(z
j
k) +

∫
dx p(z jk|x) pD fk|k−1(x) (49)

where λc(z) is the Poisson intensity of the clutter point
process. It is assumed that the prior intensity is given in
a CPD form where ρ

(k|k−1)
d,l are its loading vectors for

l = 1, . . . ,L and d = 1, . . . ,D. Using the sensor model
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from (31), we obtain the following update equation in a
tensorized form:

fk|k =
(
(1 − pD)

L∑
l=1

D⊗
d=1

ρ
(k|k−1)
d,l

+
mk∑
j=1

pD

λ(z jk)

L∑
l=1

L′∑
l ′=1

D⊗
d=1

ρ
(k|k−1)
d,l 	 λ

j
d,l ′

)
(50)

where the expected measurement likelihood λ(z jk) is
given by

λ(z jk) = λc(z
j
k) +

L∑
l=1

L′∑
l ′=1

pD
D∏
d=1

�xd

Nd∑
i=1

[ρ(k|k−1)
d,l ]i · [λ j

d,l ′ ]i.

(51)

Here, the PHD filter update equations were used. The
extension to higher order statistics filter for the number
of targets (CPHD) [28], the iFilter [29], or (generalized)
multi-Bernoulli filters [30] is straightforward.

V. NUMERICAL EVALUATION

In this section, we demonstrate the performance of
the described algorithms by means of numerical simu-
lations. It is divided into three parts describing the sim-
ulation setup and results of a nonlinear scenario (a), a
scenario with ambiguous measurements (b), and a mul-
titarget scenario (c), respectively. In all scenarios, a four-
dimensional state space was used such that

x = (x, y, ẋ, ẏ)�. (52)

The simulated target(s) move according to a discretized
almost constant velocity model where the transition and
process noise model is given by

xk+1 = Fk|k−1xk + wk|k−1 (53)

Fk|k−1 =
(
1 T
0 1

)
⊗ I2 (54)

wk|k−1 ∼ N (
O, Qk|k−1

)
(55)

Qk|k−1 = q ·
(
O O
O TI2

)
(56)

where the power spectral density was set to q = 0.1.

A. Nonlinear Example

In the nonlinear scenario, a single target is observed
bymeans of a bistatic radarwith one transmitter antenna
(Tx) and two receiving antennas (Rx1 and Rx2). Once a
second, the bistatic ranges |Tx−x|+|Rxi−x| for i = 1, 2
are measured with additive Gaussian noise with a stan-
dard deviation of σbr = 1.0m. The receivers were located
at (0, 8)�, and (0, 12)�, respectively, and the transmitter
was set in between at (0, 10)�.
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Fig. 2. Exemplary initial pdf based on two bistatic range
measurements of a target (brown star) where the transmitter is

located at the center (red circle) of two receivers (purple circles). It
can be seen that the Gaussian approximation (green) does not
reflect the measurement uncertainty in an appropriate way, in
contrast to that the 2D marginal of the tensor representation

(blue/yellow color range) gives a precise approximation to the true
Bayes posterior.

The same measurements also were processed by an
EKF and a bootstrap PF using importance resampling.
The initial state and covariance for these filters was, re-
spectively, estimated by the first and second moment of
the likelihood function of the first measurement.The ini-
tial velocity was set to zero with a standard deviation of
2ms . The initial pdf of the position is shown exemplary in
Fig. 2.

The results of the numerical evaluation are shown
in Fig. 3. We have plotted the root mean squared error
(RMSE) of 50Monte Carlo simulations.Clearly, the ten-
sor approach reaches the performance of the PF, which
is close to the Cramer–Rao lower bound.
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Fig. 3. Root mean squared error (RMSE) of 50 Monte Carlo
simulations. It can be seen that the tensor decomposition-based
approach has equal or better estimation performance than the

extended Kalman filter or the particle filter.
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B. Multitarget Example

The multitarget scenario demonstrates the ability of
the tensor decomposition-based PHD filter as described
in Section IV to estimate the number of targets and their
respective states. Since the PHD intensity is a label-free
statistic, an evaluation of the estimation errors would re-
quire some state extraction algorithm,which is out of the
scope of this paper.As a consequence, the x–ymarginals
of the intensity function of an exemplary simulation are
presented.

In the multitarget scenario, two targets are initial-
ized with states x10 = (0, 0, 1, 1)� and (10, 10,−1,−1)�,
respectively.

Fig. 4 shows the intensity function in x–y coordinates
after the initialization and after 50 time steps of 0.1 s.

C. Filtering in High Dimensions

The third example scenario can be considered a toy
problem. It is specified to demonstrate the power of the
tensor decomposition approach in high-dimensional fil-
tering problems. These high dimensions can easily ap-
pear in practical scenarios such as SLAM-based [31] nav-
igation data fusion.

The scenario demonstrated here is a one-step fil-
tering of a given prior density using a linear measure-
ment. For various dimensions D, the prior is given by a
mean

x0|0 = (50, . . . , 50)� (57)

and a covariance matrix P0|0 = [P0|0]i, j for i, j =
1, . . . ,D, where

[P0|0]i, j = 100, if i == j (58)

[P0|0]i, j = 50, else. (59)
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Fig. 5. Root mean squared error (RMSE) for 100 Monte Carlo
simulations on a single measurement update for various dimensions.

The true state of the system is drawn randomly accord-
ing to the prior distribution. The measurement vector
is the true state corrupted by additive Gaussian noise,
where the covariance matrix is given by the unity ma-
trix ID. For the tensor approach,L = 2,000 components
were used and for the particle filter Npf = 10,000 par-
ticles were used.4 For each dimension 100 Monte Carlo
simulations were used.

It can be seen from Fig. 5 that the particle filter de-
grades due to the curse of dimensionality. The tensor
decomposition approach clearly outperforms the parti-
cle filter in higher dimensions where it is obvious that
the difference increases when the D grows. In Fig. 6, the
mean processing times for both filters are summarized.

4The number of particles and components, respectively, was chosen
such that the processing time is of equal magnitude.

Fig. 4. Multitarget intensity function after the initialization (a) and after 50 time steps (b).
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Fig. 6. Mean processing times for the tensor decomposition filter
and the particle filter.

VII CONCLUSION

In this paper, we have applied the CPD-based ap-
proach of nonlinear Bayesian filtering on practical mul-
titarget tracking problems with false measurements. By
means of the probabilistic data association (PDA) likeli-
hood, the update formula for single targets in cluttered
environments for CPD tensors was derived. Then, it was
shown that the CPD representation can also be used to
apply set theory-based filters such as the PHD filter. In
a numerical evaluation the performance was compared
to the existing methods for nonlinear filtering. In a toy
example it has been shown that the CPD is a powerful
representation of a density function in particular if the
problem is high dimensional.

APPENDIX

In the Appendix, we would like to provide some de-
tails and assistance for the interested reader who wants
to implement some of the algorithms above. Since most
engineers in data fusion and tracking work with Gaus-
sian mixtures, particles, and optimization algorithms, the
tensor decomposition-based data fusion can be consid-
ered quite new and unknown. This section should help
to start from the scratch to implement the CPD tensors
and the corresponding filters.

Implementation

A CPD tensor, which is given by

p(x) =
L∑
l=1

D⊗
d=1

ρd,l

is fully described by L loading vectors for each dimen-
sion d = 1, . . . ,D. It is useful to store these vectors
as matrices, called loading matrices, U1, . . . ,UD. For a
given dimension d, each loading vector ρd,l has by def-

inition Nxd entries, therefore, the loading matrix Ud is
of the size Nxd × L. In the following explanations, we
will use the following short notation for the above CPD
tensor:

p(x) = [U1, . . . ,UD] = [Ud]Dd=1.

The multiplication with an exemplary decomposed
likelihood function

�(z, x) =
D⊗
d=1

λd

then reduces to simple matrix multiplication:

p(x) · �(z, x) = [diag [λd]Ud]Dd=1.

If the likelihood function has multiple components as
in (17), the same operation is computed for each of the
components and the resulting matrices are appended
horizontally. Also it should be noted that likelihood
functions of lower dimensions can easily be incorporated
by setting λd = 1d for d > d′, where d′ is the dimension
of the likelihood.

Integration

The integral of a CPD tensor∫
dx

L∑
l=1

D⊗
d=1

ρd,l

can easily be computed by means of cheap computa-
tional operations. This can be seen by the fact that∫

dx
L∑
l=1

D⊗
d=1

ρd,l =
L∑
l=1

∫
dx

D⊗
d=1

ρd,l

=
L∑
l=1

∑
i1,...,iD

D∏
d=1

[ρd,l]id · �xd

=
L∑
l=1

D∏
d=1

�xd

Nd∑
id=1

[ρd,l]id .

Computing the Mean Vector

Again, it is assumed that the pdf is given in a CPD-
tensorized form:

p(x) =
L∑
l=1

D⊗
d=1

ρd,l .

The mean E [x] = x̂ = [x̂d]d is given by

x̂d =
∫

dx xd
L∑
l=1

D⊗
d=1

ρd,l .

Using the integration rule from above, we obtain

x̂d =
L∑
l=1

∏
j �=d

⎧⎨
⎩�x j

Nj∑
i j=1

[ρ j,l]i j

⎫⎬
⎭ �xd

Nd∑
id=1

[diag [[xd]] ρd,l]id .
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Computing the Covariance Matrix

Analogously, the covariance matrix cov [x] = P =
[Pi j]i, j can be computed by 1

2D(D+ 1) integration oper-
ations. For given i and j, the covariance is given by

Pi j =
∫

dx (xi − x̂i)(x j − x̂ j)
L∑
l=1

D⊗
d=1

ρd,l .

For i �= j, we have

Pi j =
L∑
l=1

∏
k �=i∧k �= j

⎧⎨
⎩�xk

Nk∑
ik=1

[ρk,l]ik

⎫⎬
⎭

· �xi

Ni∑
ii=1

[diag [[Tx̂ixi]] ρi,l]ii

· �x j

Nj∑
i j=1

[diag
[
[Tx̂ jx j]

]
ρ j,l]i j

where Tx̂ j is the affine translation such that [(x j− x̂ j)]i =
Tx̂ jx j. The diagonal elements similarly are given by

Pii =
L∑
l=1

∏
k �=i

⎧⎨
⎩�xk

Nk∑
ik=1

[ρk,l]ik

⎫⎬
⎭

· �xi

Ni∑
ii=1

[diag
[
[([xi]l − x̂i)2]l

]
ρi,l]ii .
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